skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "DeVos, Alicia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent work in HCI suggests that users can be powerful in surfacing harmful algorithmic behaviors that formal auditing approaches fail to detect. However, it is not well understood how users are often able to be so effective, nor how we might support more effective user-driven auditing. To investigate, we conducted a series of think-aloud interviews, diary studies, and workshops, exploring how users find and make sense of harmful behaviors in algorithmic systems, both individually and collectively. Based on our findings, we present a process model capturing the dynamics of and influences on users’ search and sensemaking behaviors. We find that 1) users’ search strategies and interpretations are heavily guided by their personal experiences with and exposures to societal bias; and 2) collective sensemaking amongst multiple users is invaluable in user-driven algorithm audits. We offer directions for the design of future methods and tools that can better support user-driven auditing. 
    more » « less
  2. A growing body of literature has proposed formal approaches to audit algorithmic systems for biased and harmful behaviors. While formal auditing approaches have been greatly impactful, they often suffer major blindspots, with critical issues surfacing only in the context of everyday use once systems are deployed. Recent years have seen many cases in which everyday users of algorithmic systems detect and raise awareness about harmful behaviors that they encounter in the course of their everyday interactions with these systems. However, to date little academic attention has been granted to these bottom-up, user-driven auditing processes. In this paper, we propose and explore the concept of everyday algorithm auditing, a process in which users detect, understand, and interrogate problematic machine behaviors via their day-to-day interactions with algorithmic systems. We argue that everyday users are powerful in surfacing problematic machine behaviors that may elude detection via more centrally-organized forms of auditing, regardless of users' knowledge about the underlying algorithms. We analyze several real-world cases of everyday algorithm auditing, drawing lessons from these cases for the design of future platforms and tools that facilitate such auditing behaviors. Finally, we discuss work that lies ahead, toward bridging the gaps between formal auditing approaches and the organic auditing behaviors that emerge in everyday use of algorithmic systems. 
    more » « less